
International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1649
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

User Authentication Method against SQL
Injection Attack

Manju Khari, Nikunj Kumar

Abstract- The Internet and web applications are playing very important role in our today’s modern day
life. Most of the web applications use the database as a back end to store critical information. SQL
injection attacks represent a serious threat to any database-driven site. The methods behind an attack
are easy to learn and the damage caused can range from considerable to complete system compromise.
Despite these risks an incredible number of systems on the internet are susceptible to this form of attack.
Organizations are using a reactive approach towards these threats, instead of a proactive approach that
would help avoiding them. In this paper, we propose a technique for user authentication to prevent
SQLIAs by hashing and salting the user name and password.

Keywords- Web applications vulnerabilities, SQL injection, Authentication, Hashing, Salting, Database
security, Internet

1 INTRODUCTION
Web applications are extremely popular today because
they are ubiquitous and can be easily maintained and
updated. Users access the interface via a web browser and
send requests to the web server, which in turn translates
these requests to database SQL commands and, using the
results of those commands, generates the response that is
sent back to the browser for final presentation to the user.
A major problem is that web applications are often
insecure. In fact, web application developers are normally
not specialized in security and the usual time to market
constraints direct the effort on satisfying the user’s
requirements, causing security aspects to be easily
neglected.

SQL injection is a particularly dangerous threat that
exploits application layer vulnerabilities inherent in web
applications. Instead of attacking instances such as web
servers or operating systems, the purpose of SQL injection

is to attack RDBMSs, running as back-end systems to web
servers, through web applications [1].

Every web application, using a relational database, can
theoretically be a subject for SQL injection attacks. If
successful, SQL injection attacks may therefore result in
exposure of and serious impact on the corporations most
valuable information assets. These attacks may in the worst
case result in a completely destroyed database schema,
which in turn may affect a corporation’s ability to perform
business [2].

Login page is the most complicated web application
which allows users to enter into the database after
authenticating them. In this page, the users provide their
identity like username and password. A sophisticated
attacker can able to compromise the user name and
password by launching on-line and off-line guessing
attack.

Web based applications are normally has three tier
model, Application (Front End), Middle tier (Protocol), and
backend (Data base), given in figure 1. If a user wants to
access the data base form remote place then he has to logon
to the system through web site using the user name and
password. In the middle tier, SQL query is generated with
the given input data. The server verifies the user name and
password, if it matches then the user will be allowed to
access the data base. Login page is the most complicated in
the web application which allows users to access database
after the completion of authentication process. In this page,
the user provides his identity like username and password.
There might be some invalid input validations which can

————————————————
• Manju Khari is working as Asst. Professor in Department of Computer

Science and Engineering of AIACT&R, Delhi, India.
 E-mail: manjukhari@yahoo.co.in

• Nikunj Kumar is currently pursuing M.Tech in Information Security in

AIACT&R, Delhi, India
E-mail: nikunjkumar14@gmail.com

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1650
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

bypass the authentication process using some mechanism
like SQL injection [3].

If username and password are defined by the user, the
method embeds the submitted credentials in the query. For
instance, if a user submits username and Password as
“XYZ” and “111,” then the query will be:
Query_result = “SELECT * from User_Credentials WHERE
username = ‘XYZ’ and password = ‘111’”

A web site that uses this servlet would be vulnerable to
SQLIAs: For example, if a user enters “‘OR 1=1 --” and “”,
instead of “XYZ” and “111”, the resulting query is:
Query_result = “SELECT *from User_Credentials WHERE
username = ‘’OR 1 = 1 --‘AND password = ‘’”

Analyzing the above query, the result is always true for
variable Query_result. It is because malicious code has
been used in the query. Here, in this query the mark (‘) tells
the SQL parser that the user name string is finished and "
OR 1=1 " statement is appended to the statement which
always results in true. The (– –) is comment mark in the
SQL which tells the parser that the statement is finished
and the password will not be checked. So, the result of the
whole query will return true for Query_result variable
which authenticates the user without checking password.

Fig. 1. Basic Model for Web Applications

The paper is structured as follows: Section 2 discuses
background. Section 3 describes related work. Section 4 is
focused on proposed user authentication method and
section 5 discuses the implementation and testing. Finally
section 6 concludes the work done.

2 BACKGROUND
SQL injection is an attack technique that mainly occurs due
to the insecure coding practices [4]. This attack modifies the

SQL statement in such a way so that the legitimate inputs
or the authentication of a legitimate user is bypassed and
the database executes the malicious code supplied by the
attacker. The basic cause of the vulnerability is the un-
sanitized user input.

Any web application can be formalized with respect to
SQL injection attack as follows:
• It accepts the input from a user or system.
• It concatenates input with hardcoded SQL statement and
builds complete query structure.
• The generated query gets executed and concatenates
result with HTML code.

In the context of above formalization SQL injection
attack is targeted on a program at the database layer which
is connected to a web application. This SQL injection attack
exploits weakness or vulnerability in the target program to
properly verify the input supplied to it through a web form
[5]. In a typical SQL injection attack the attacker posts
specially crafted structured query language (SQL)
statements which are executed in the database server and
produce malicious outcomes.

3 RELATED WORK
There are many ways to prevent SQL Injection attacks.
Prevention concerns with correctness of input value which
is supplied by client or user at coding level. These
techniques force the client to enter correct data and can be
barred to enter illegal value which is harmful to database
server. Such type of prevention can be done at both sides
whether it may be client side or server side but SQL
injection cannot be prevented with this technique. The tools
and techniques for detecting and preventing SQL injection
are given below:

CANDID [5] is proposed by Bandhakavi et al. This
approach automatically prevents SQLIA using dynamic
candidate evaluations. It dynamically mines the
programmer intended query structure on any input and
detects attacks by comparing it against the structure of
actual query.

SQLGuard [6] is proposed by Buehrer et al. SQLGuard
checks at runtime whether SQL queries conform to a model
of the expected queries. The model is deduced at runtime
by examining the structure of the query before and after a
client’s requests. SQLGuard requires the application
developer to rewrite code to use a special intermediate
library.

SQLIPA [7] is proposed by Shaukat Ali et al. In this
approach they used hash value to improve performance of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1651
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

authentication for web application. This hash value for
username and password is created at runtime when user
account is created. SQLIPA (SQL Injection Protector for
Authentication) prototype was developed in order to test
the framework. Though the proposed framework was
tested on few sample data and had an overhead of 1.3 ms,
it requires further improvement to reduce the overhead
time. It also requires to be tested with larger amount of
data.

Tautology Checker [8] is proposed by Wassermann et al.
This approach uses static analysis combined with
automated reasoning to verify that the SQL queries
generated in the application layer cannot contain a
tautology. The primary drawback of this technique is that
its scope is limited to detecting and preventing tautologies
and cannot detect other types of attacks.

AMNESIA [9] is proposed by Halfond et al. AMNESIA is
model based technique that combines the static and
dynamic analysis. In the static phase, it uses a static
analysis to build the models of the SQL queries that an
application legally generates at each point of the access to
the database. In dynamic phase, it intercepts all the SQL
queries before they are sent to the database and checks
each query against the statically built models queries that
violate the model are identified as SQL injection attacks.
The accuracy of AMENSIA depends on that of static
analysis. Unfortunately, certain types of obfuscation codes
and/or query generation technique make this step less
precise and the result is both false positive and negative.

SQLrand [3] is proposed by Boyd et al. SQLrand provides a
framework that allows developers to create SQL queries
using randomized keywords instead of the normal SQL
keywords. A proxy between the web application and
database intercepts SQL query and de-randomizes the
keywords. The SQL keywords injected by an attacker
would not have been constructed by the randomized
keywords, and thus the injected command would result in
a syntactically incorrect query. Since SQLrand uses a secret
key to modify keywords, its security relies on attackers not
being able to discover this key. SQLrand requires the
application developers to re-write the code.

SANIA (Syntactic and Semantic Analysis for Automated
Testing against SQL Injection) [10] is propose by Kosuga et

al. Sania is designed to used by a web applications
developer during the development and debugging phase,

and thus is able to intercept SQL queries between an
application and the database as well as HTTP requests
between a client and application. After capturing HTTP
requests and SQL queries, Sania checks for any SQL
injection vulnerabilities.

WebSSARI [11] is proposed by Huang et al. WebSSARI
detects input-validation related errors using information
flow analysis. In this approach, static analysis is used to
check taint flows against preconditions for sensitive
functions. The analysis detects the points in which
preconditions have not been met and can suggest filters
and sanitization functions that can be automatically added
to the application to satisfy these preconditions. The
WebSSARI system works by considering as sanitized input
that has passed through a predefined set of filters. In their
evaluation, the authors were able to detect security
vulnerabilities in a range of existing applications. The
primary drawbacks of this technique are that it assumes
that adequate preconditions for sensitive functions can be
accurately expressed using their typing system and that
having input passing through certain types of filters is
sufficient to consider it not tainted. For many types of
functions and applications, this assumption is too strong.

Unless developers properly design their application
code to protect against unexpected data input by users,
alteration to the database structure, corruption of data or
evaluation of private and confidential information may be
granted inadvertently.

4 PROPOSED METHOD
This section proposes an authentication scheme using hash
function and salt (random string concatenated to the
password string when it created) for preventing SQL
injection attacks. In this method there is need for three
extra columns in User_Credentials table. The first one is for
hash value of user name, second one is for salt and the last
one is for hash value of password||salt. The hash values
are calculated for user name and password||salt when a
user account is created for the first time and stores it in the
User_Credentials table. When users want to login to
database hash values of user name and password||salt are
calculated at runtime and checked with stored hash values
in the User_Credentials table. Whenever user enters his/her
user name and password in the user name and password
fields, the query at the back end server will be creating as:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1652
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Query_result = “SELECT * FROM User_Credentials WHERE Username_Hash_value = "Username_Hash_value" AND
Password_Hash_value = "Password_Hash_value" AND Username = ' 'OR 1=1 – – AND password = 'Password’”

In the query shown above, if hackers enter the SQL
injection query still they cannot bypass the authentication
process. The benefit of the proposed method is that the
hackers do not know about the salt and hash values of user
name and password. So, it is not possible for the hacker to
bypass the authentication process through the general SQL
injection techniques. The SQL injection attacks can only be
done on codes which are entered through user entry form
but the hash values are calculated at run time at backend
before creating SELECT query to the underlying database
therefore the hacker cannot calculate the hash values as it
dynamic at runtime.

Fig. 2. Model for Proposed Method

5 IMPLEMENTATION AND TESTING
The system has been implemented using Microsoft SQL
server as a DBMS. Three stored procedures with name
Create_User_Credentials, Generate_Random_String and
User_Authentication have been used. The proposed
method has been test by compare the processing overhead
of the proposed method with existing related techniques

such as PSQLIA-AES and SQLIPA whose result is shown
in fig. 3.

Fig. 3. Comparison of Processing Overhead of Proposed Method and
related techniques

The graph in fig. 3 shows the result of comparison of

processing overhead of proposed method, SQLIPA,
PSQLIA-AES. The time overhead of the proposed method
is that it takes 0.9 ms of extra time overhead to protect
database against SQL injection which is almost negligible
fraction of time and has no significance compared to
securing the authentication process. Salting makes the
dictionary attack more difficult. If the original password is
6 digits and the salt is 4 digits, then hashing is done over a
10 digit value. This means that hacker now needs to make a
list of 10 million items and create a hash for each of them.
The list of hashes has 10 million entries, and the
comparison takes much longer.

6 CONCLUSION
This paper presents a new method to secure the
authentication process of the database. Proposed method
uses user name, password, salt and their hash values for
authentication process. The method is tested on sample
data of different records in User_Credentials table. It takes
very little time overhead of 0.9 ms for authentication
process.

ACKNOWLEDGEMENTS
Authors wish to express sincere gratitude to the
administration of Department of Computer Science and
Engineering, AIACT&R, Delhi for providing the academic
environment to pursue research activities.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4

Techniques

T
im

e
in

 M
ill

is
ec

on
ds

Processing Overhead

SLIPA

Proposed Method

PSQLIA-AES

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June-2013 1653
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

REFERENCES
[1] Martin Eizner, “Direct SQL command injection,” Technical

report, The Open Web Application Security Project, 2001.

[2] Mitchell Harper, “SQL injection attacks - are you safe?
Technical report, DevArticles,May 2002.

[3] S. W. Boyd and A. D. Keromytis, “SQLrand: Preventing SQL

Injection Attacks,” Proc. of the 2nd Applied Cryptography and
Network Security (ACNS) Conference, pp. 292–302, June 2004.

[4] Common Weakness Enumeration, “CWE-89: improper

neutralization of special elements used in SQLcommand,”
http://cwe.mitre.org/data/definitions/89.html. 2012

[5] P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan,

“CANDID: Dynamic Candidate Evaluations for Automatic
Prevention of SQL Injection Attacks,” ACM Trans. Information
System Security, 13(2), pp. 1- 39, 2010.

[6] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using

parse tree validation to prevent SQL injection attacks,” Proc.
of the 5th International Workshop on Software Engineering and
Middleware SEM, pp. 106–113, 2005.

[7] S. Ali, S.K. Shahzad, and H. Javed, “SQLIPA: An

Authentication Mechanism against SQL Injection,” European
Journal of Scientific Research, vol. 38, no. 4, pp. 604-611, 2009.

[8] G.Wassermann and Z. Su, “An Analysis Framework for

Security in Web Applications,” Proceedings of the FSE
Workshop on Specification and Verification of Component-Based
Systems (SAVCBS ‘04), pp. 70–78, 2004.

[9] W. G. Halfond and A. Orso, “AMNESIA: Analysis and

Monitoring for NEutralizing SQL-Injection Attacks,” Proc. of
the IEEE and ACM International Conference on Automated
Software Engineering (ASE ‘05), Long Beach, CA, USA, Nov
2005.

[10]Y. Kosuga, K. Kono, M. Hanaoka, M. Hishiyama, and Y.

Takahama, “Sania: Syntactic and Semantic Analysis for
Automated Testing against SQL Injection,” Proc. of 23rd
Annual Computer Security Applications Conference (ACSAC
2007), pp. 107-117, Dec. 2007.

[11]Y. Huang, F. Yu, C. Hang, C. H. Tsai, D. T. Lee, and S. Y. Kuo,

“Securing Web Application Code by Static Analysis and
Runtime Protection,” Proc. of the 12th International World Wide
Web Conference (WWW ‘04), May 2004.

IJSER

http://www.ijser.org/

